Erratum: High affinity anchoring of the decoration protein pb10 onto the bacteriophage T5 capsid

نویسندگان

  • Emeline Vernhes
  • Madalena Renouard
  • Bernard Gilquin
  • Philippe Cuniasse
  • Dominique Durand
  • Patrick England
  • Sylviane Hoos
  • Alexis Huet
  • James F. Conway
  • Anatoly Glukhov
  • Vladimir Ksenzenko
  • Eric Jacquet
  • Naïma Nhiri
  • Sophie Zinn-Justin
  • Pascale Boulanger
چکیده

Bacteriophage capsids constitute icosahedral shells of exceptional stability that protect the viral genome. Many capsids display on their surface decoration proteins whose structure and function remain largely unknown. The decoration protein pb10 of phage T5 binds at the centre of the 120 hexamers formed by the major capsid protein. Here we determined the 3D structure of pb10 and investigated its capsid-binding properties using NMR, SAXS, cryoEM and SPR. Pb10 consists of an α-helical capsid-binding domain and an Ig-like domain exposed to the solvent. It binds to the T5 capsid with a remarkably high affinity and its binding kinetics is characterized by a very slow dissociation rate. We propose that the conformational exchange events observed in the capsid-binding domain enable rearrangements upon binding that contribute to the quasi-irreversibility of the pb10-capsid interaction. Moreover we show that pb10 binding is a highly cooperative process, which favours immediate rebinding of newly dissociated pb10 to the 120 hexamers of the capsid protein. In extreme conditions, pb10 protects the phage from releasing its genome. We conclude that pb10 may function to reinforce the capsid thus favouring phage survival in harsh environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Viral nanoparticle-encapsidated enzyme and restructured DNA for cell delivery and gene expression.

Packaging specific exogenous active proteins and DNAs together within a single viral-nanocontainer is challenging. The bacteriophage T4 capsid (100 × 70 nm) is well suited for this purpose, because it can hold a single long DNA or multiple short pieces of DNA up to 170 kb packed together with more than 1,000 protein molecules. Any linear DNA can be packaged in vitro into purified procapsids. Th...

متن کامل

Stepwise molecular display utilizing icosahedral and helical complexes of phage coat and decoration proteins in the development of robust nanoscale display vehicles.

A stepwise addition protocol was developed to display cargo using bacteriophage P22 capsids and the phage decoration (Dec) protein. Three-dimensional image reconstructions of frozen-hydrated samples of P22 particles with nanogold-labeled Dec bound to them revealed the locations of the N- and C-termini of Dec. Each terminus is readily accessible for molecular display through affinity tags such a...

متن کامل

In vitro assembly of the T=13 procapsid of bacteriophage T5 with its scaffolding domain.

The Siphoviridae coliphage T5 differs from other members of this family by the size of its genome (121 kbp) and by its large icosahedral capsid (90 nm), which is organized with T=13 geometry. T5 does not encode a separate scaffolding protein, but its head protein, pb8, contains a 159-residue aminoterminal scaffolding domain (Delta domain) that is the mature capsid. We have deciphered the early ...

متن کامل

Cell-specific targeting by engineered M13 bacteriophage expressing VEGFR2 nanobody

Objective(s): Filamentous bacteriophage M13 was genetically engineered to specifically target mammalian cells for gene delivery purpose. Materials and Methods: A vascular endothelial growth factor receptor 2 (VEGFR2)-specific nanobody was genetically fused to the capsid gene III of M13 bacteriophage (pHEN4/3VGR19). A mammalian expression construct containing Cop-green fluorescent protein (Cop-G...

متن کامل

Genomic, Proteomic and Physiological Characterization of a T5-like Bacteriophage for Control of Shiga Toxin-Producing Escherichia coli O157:H7

Despite multiple control measures, Escherichia coli O157:H7 (STEC O157:H7) continues to be responsible for many food borne outbreaks in North America and elsewhere. Bacteriophage therapy may prove useful for controlling this pathogen in the host, their environment and food. Bacteriophage vB_EcoS_AKFV33 (AKFV33), a T5-like phage of Siphoviridae lysed common phage types of STEC O157:H7 and not no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017